A p-adic algorithm to compute the Hilbert class polynomial
نویسنده
چکیده
Classicaly, the Hilbert class polynomial P∆ ∈ Z[X] of an imaginary quadratic discriminant ∆ is computed using complex analytic techniques. In 2002, Couveignes and Henocq [5] suggested a p-adic algorithm to compute P∆. Unlike the complex analytic method, it does not suffer from problems caused by rounding errors. In this paper we complete the outline given in [5] and we prove that, if the Generalized Riemann Hypothesis holds true, the expected runtime of the p-adic algorithm is e O(|∆|). We illustrate the algorithm by computing the polynomial P −639 using a 643-adic algorithm.
منابع مشابه
p-ADIC CLASS INVARIANTS
We develop a new p-adic algorithm to compute the minimal polynomial of a class invariant. Our approach works for virtually any modular function yielding class invariants. The main algorithmic tool is modular polynomials, a concept which we generalize to functions of higher level.
متن کاملON p-ADIC PROPERTIES OF TWISTED TRACES OF SINGULAR MODULI
We prove that logarithmic derivatives of certain twisted Hilbert class polynomials are holomorphic modular forms modulo p of filtration p+1. We derive p-adic information about twisted Hecke traces and Hilbert class polynomials. In this framework we formulate a precise criterion for p-divisibility of class numbers of imaginary quadratic fields in terms of the existence of certain cusp forms modu...
متن کاملComputing Hilbert Class Polynomials
We present and analyze two algorithms for computing the Hilbert class polynomial HD. The first is a p-adic lifting algorithm for inert primes p in the order of discriminant D < 0. The second is an improved Chinese remainder algorithm which uses the class group action on CM-curves over finite fields. Our run time analysis gives tighter bounds for the complexity of all known algorithms for comput...
متن کاملCalculating the Power Residue Symbol and Ibeta
In the recent PhD thesis of Bouw, an algorithm is examined that computes the group structure of the principal units of a p-adic number eld completion. In the same thesis, this algorithm is used to compute Hilbert norm residue symbols. In the present paper, we will demonstrate two other applications. e rst application is the computation of an important invariant of number eld completions, ca...
متن کاملp-ADIC HEIGHTS OF HEEGNER POINTS AND ANTICYCLOTOMIC Λ-ADIC REGULATORS
Let E be an elliptic curve defined over Q. The aim of this paper is to make it possible to compute Heegner L-functions and anticyclotomic Λ-adic regulators of E, which were studied by Mazur-Rubin and Howard. We generalize results of Cohen and Watkins, which enable us to compute Heegner points of non-fundamental discriminant. We then prove a relationship between the denominator of a point of E d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 77 شماره
صفحات -
تاریخ انتشار 2008